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Abstract

The objective of on-line flagging in this paper is to perform an interactive assessment of geosynchronous satellites
anomalies such as cross-tagging of satellites in a cluster, solar panel offset change, etc. This assessment will utilize a
Bayesian belief propagation procedure and will include an automated update of the baseline signature data for the
satellite, while accounting for the seasonal changes. Its purpose is to enable an ongoing, automated assessment of
satellite behavior through its life cycle using the photometry data collected during the synoptic search performed by
a ground or space-based sensor as a part of its metrics mission. The change in the satellite features will be reported
along with the probabilities of type | and type Il errors.

The objective of adaptive sequential hypothesis testing in this paper is to define future sensor tasking for the purpose
of characterization of fine features of the satellite. The tasking will be designed in order to maximize new
information with the least number of photometry data points to be collected during the synoptic search by a ground
or space-based sensor. Its calculation is based on the utilization of information entropy techniques. The tasking is
defined by considering a sequence of hypotheses in regard to the fine features of the satellite. The optimal
observation conditions are then ordered in order to maximize new information about a chosen fine feature.

The combined objective of on-line flagging and adaptive sequential hypothesis testing is to progressively discover

new information about the features of geosynchronous satellites by leveraging the regular but sparse cadence of data
collection during the synoptic search performed by a ground or space-based sensor.
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1.0 Introduction

This work is a continuation of [1]. The notation in this paper is derived from [1]. It builds upon the various concepts,
methods, assumptions and procedures defined in [1]. These include the time slider, the two facet model, Brightness
Ratio, Cluster-based evidence, Model-based evidence, Bayesian belief propagation, near-real time assessment of
change, Inversion Model, Predictive Model, and Statistics Model. This paper may be viewed as new work on the
decision to move the time slider [1], which is required in order to update the baseline signature (brightness) data for
a satellite.

Reference 1 describes a Bayesian belief propagation procedure for the detection and resolution of cross-tag between
two satellites. Such resolution is necessary in order to correctly associate new data for each satellite. This paper
extends this data association procedure to multi-satellite cross-tag detection and resolution, including the
probabilities of false positive and false negative.

Fig. 2 - Fig. 4 show a notional baseline and new data for three satellites that comprise a notional cluster. A cluster is
a group of satellites that are normally simultaneously captured in a sensor’s field of view as shown in Fig. 1. The
three satellites are denoted as Si, S, and Ss, respectively. The baseline data is denoted with blue markers and the new
data is denoted with red markers. The data has large gaps, which correspond to the daytime gap in data collection.
The same data is plotted in Fig. 5 with respect to the orbit angle, which is the same as the longitudinal phase angle
except that it is computed with respect to the orbital plane of the satellite instead of the equatorial plane. Note how
the brightness data for the three satellites overlaps with each other making it difficult to correctly associate the data
on the basis of brightness values alone. If the satellites maneuver during daytime, the new data may be cross-tagged.
The data in Fig. 2 - Fig. 4 may present itself in six different ways (e.g. S; tagged correctly but S,-S; are cross-
tagged, or Ss tagged correctly but S;-S; are cross-tagged, or S; is tagged as S, Sy is tagged as Ss and Sz is tagged as
Sy, etc.). The specific manner in which the data may present itself is unknown a priori. Accordingly, the methods in
this paper are designed to resolve the cross-tag irrespective of how the data presents itself.
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Fig. 5. Signatures of the Three Satellites in the Cluster

Reference 1 computes belief in cross-tag resolution using Bayes theorem, cluster-based evidence and model-based
evidence. This work resolves cross-tag using three methods (Z-test for dependent data, classical sequential analysis
and Brownian motion drift analysis). It analyzes the sequence of values of Brightness Ratio (r) and P(NOM | ri) for
this purpose. It also makes recursive use of model-base evidence.

2.0 Background

Change is defined as the difference between the observed behavior and the expected behavior. The expected
behavior is defined by the user on the basis of prior data. Typical methods utilized in order to determine the
expected behavior are a physics-based model, statistical model, or data interpolation. In this work, we use a physics-
based model, which is based on the inversion of prior data. The change is expressed in terms of a ratio, r,, where k
is the observation number [1], which is denoted as the Brightness Ratio. Specifically:
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Where I, is the observed single point brightness, I, is the expected single point brightness. Under ideal, nominal

conditions, the ratio of I, and I, would equal one. The values of k < 0 comprise the baseline dataand k > 0 is
new data (i.e. the green and yellow markers in Fig. 6, respectively). The time slider is located after k = —1, or at the
end of the baseline data. Alternately, the time slider separates the baseline data and new data. The definition of r,
includes a subtraction by one so that its expected value, E(r;) = 0 under ideal conditions. The methods,
assumptions and procedures are defined by considering that E(r;,) # 0 when change occurs. The nonzero value of
E () is treated as a measure of bias between the expected brightness and observed brightness.
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Fig. 6. Schematic of Time Slider Movement

The two-facet model is used as the Inversion Model. It represents a three-axis stabilized satellite as two facets,
namely a body facet that points to nadir and a solar panel facet that tracks the sun as seen in Fig. 7. This Inversion
Model may be considered a O™ order model that captures basic truth about the satellite, while not explicitly
accounting for the fine features of the satellite (e.g. antenna, dishes, self-occlusions). The benefit of this model is
that it can be utilized to estimate the body and panel optical behavior for any three-axis stabilized satellite. Its
shortcoming is that its accuracy depends on the complexity of the satellite’s geometry. Thus, there typically is bias
in the values of the Brightness Ratio, depending on the observation conditions as follows in [1], and the analysis is
limited to a subset of permissible orbit angle values. Specifically:

e At small phase angles, the solar panel specular behavior dominates and the bias is larger.

e At medium phase angles (< 75°), the body diffuse behavior dominates. The bias is small except where there are
brightness contributions from features that arise from self-occlusion and body attachments.

e At phase angles close to 90°, the specular glints from body attachments dominate the character of brightness and
the bias can be larger.

e The analysis is not performed for phase angles greater than 90°.
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Fig. 7. Two-facet model

Thus, the value of E(r;,) is nearly zero for each satellite for most orbit angles. There are regimes of orbit angles
where the Brightness Ratio is large. These represent the observation conditions where the Inversion Model needs
improvement, which could be attained by adding higher order terms to the basis functions for the two facets in order
to represent the fine features or by defining additional facets to represent the satellite geometry. Note that if there
was no change in a satellite, sensor orbit, and solar declination, the character of E (1) is expected to remain
unchanged because the Inversion Model is ‘invariant’. If there was change in the satellite, observation conditions, or
illumination condition, the value of E(r;,) can change. It is necessary to assess if this change is nominal (NOM)
(unchanged from the baseline) or anomalous (ANOM) (changed from the baseline). The value of E (;,) can become
ANOM due to cross-tag. This is because, in the calculation of the brightness ratio, the denominator (or the predicted
value of satellite brightness by the Predictive Model) is for a different satellite.

The goal is to detect change, characterize it as NOM or ANOM and provide its resolution as quickly as possible and
to be able to provide a measure of confidence for the assessment. In order to detect change, we will use three
different methods to analyze the data sets. However, in each method, we will be using hypothesis testing to evaluate
our results. Each hypothesis test must have a specified null hypothesis, alternative hypothesis, test statistic,
significance level (alpha, or probability of type I error), and when applicable beta (probability of type Il error)

before beginning. The null hypothesis, denoted as H,,, defines a state where no change has occurred. The alternative

hypothesis, denoted as H,, defines a state where change has occurred. The test statistic used in each of the methods
involves the sample mean.

To assign a confidence level to our calculations, we must designate specific values for alpha and beta. The value of
alpha is equivalent to the probability of a type I error. A type | error is when the null hypothesis is rejected and the
alternative hypothesis is accepted, when in reality the null hypothesis is true. In other words, the test leads the user
to assess that the satellite has changed, when the satellite state is still NOM (i.e. unchanged from the baseline). A
false positive is the event that the test concludes that a change has occurred, when in reality no change has occurred
and the satellite state is NOM. Or, a false positive is a type | error.

a = level of significance of the test = P(Type I Error)
= P(rejecting the null hypothesis and accepting the alternative hypothesis,
when in reality the null hypothesis is actually true)

Beta is defined to be the type Il error. A type Il error is to accept the null hypothesis and reject the alternate

hypothesis, when in reality the alternate hypothesis is true. In other words, this is when the hypothesis test concludes
the satellite state to be NOM (i.e. same as the baseline), when in reality a change has occurred. A false negative is
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when the test concludes the satellite state to be NOM or that nothing has changed as compared to the baseline, when
in reality the satellite state has changed. Thus, a false negative is a type Il error.

B = P(Type 11 Error) = P(accepting the null hypothesis, when in reality the null hypothesis is false)

3.0 Composite Hypothesis Testing

In order to detect anomalies, we can utilize multiple methods and then combine their results using a composite
hypothesis test to obtain one final resolution. Three different methods will be described in Section 4.0 and any
combination of these methods can be combined into a composite hypothesis test. In the examples in Section 8.0, the

three methods used in the composite hypothesis test will be the Z-test for dependent data using the r,, values, the Z-
test for dependent data using the P(NOM]|r,) values, and the sequential analysis using either the r, or Ar;, values,

where Ar,= 1.~ 7,_1. As described in the next section, the Z-test for dependent data using the r,, values makes no
assumptions for the data and provides a value for P(False Positive). This method is derived from the physics based

model. The Z-test for dependent data using the P(NOM|r,) values also makes no assumptions for the data and
provides a value for the P(False Positive). However, it is derived from the Bayesian belief propagation. The

sequential analysis using either the r, or Ar, values assumes independence for successive points of data and
provides a value for the P(False Positive) and P(False Negative). This method is also derived from the physics based
model.

Once we obtain the results for all three tests for an observation, we compare the results from the different tests. If the
sequential analysis method determines we need to continue sampling, then no decision is made, and we wait for the
next observation. If the sequential analysis comes to a conclusion of NOM or ANOM and all three tests agree a
satellite is NOM or ANOM, then we can make that conclusion as shown in Fig. 8. However, if the tests do not agree,
then we can make no conclusion about that satellite. If all satellites in a cluster are determined to be NOM, we can
update the time slider as explained in Section 8.9 and continue evaluating observations. If a satellite is concluded to
be ANOM, then we will try to resolve what changed in that satellite. One way to do this is by using the cross-tag
resolution method described in Section 8.8. Once all cross-tags and changes are resolved, we can continue collecting
data.
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\
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All other combinations of NOM and ANOM will result in continuous sampling

Fig. 8. Composite Hypothesis Testing Flow Chart

Although Fig. 8 only illustrates three possible cases, each method can result in multiple outcomes. If we considered
all possible outcomes for each of the three methods, the total number of outcomes would be quite large. For the
purpose of this assessment, we are only concerned with the result when all three tests produce the same outcome.
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Thus, Fig. 8 depicts the outcomes this paper will focus on. We must also note that there are two separate methods
that can be used for the sequential analysis. If r,, is independent and has an approximately normal distribution then

Brownian motion drift analysis is used. If r, is independent but does not have an approximately normal distribution
then the classical sequential analysis method is used. This process is illustrated in Fig. 9.
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Fig. 9. Sequential Analysis Flow Chart

4.0 Hypothesis Testing Methods

The detection of change is performed using either the value of r,, or Ar;, and by using the results of the Bayes belief
calculation (i.e. P(NOM|r},)). There are three methods:

1. Z-test for dependent data [1]

2. Classical sequential analysis: This is used when r,, is independent of 7;,_;.

This provides the ability to stop after enough observations have been taken in order to make a decision
about the hypotheses based on the user-defined values of the type | and type Il errors [2].

3. Brownian motion drift analysis: This is an application of sequential analysis that is applied to the observed
process (ri) interpreted as a Brownian motion in order to determine whether or not the drift is no longer
zero. The procedure is used when Ar; is independent of Ar,_; and both have a normal distribution. This
analysis also provides the ability to stop after a finite number of observations based on the user-defined
values of the type | and type Il errors [3].

If there is no change, the time slider is moved forward and the prior probability density function (pdf) is updated.
This is to enable an ongoing assessment of the satellite state.

4.1 Z-test for Dependent Data

The Z-test for dependent data is a Central Limit Theorem type of statistical method that can be used when the
observations are not independent. Thus, this is a general method that can be used for any set of observations.
The test statistic can be approximated by a normal distribution under the null hypothesis. Each test statistic is
compared to the baseline by defining a z-score measure. The z-score represents the distance between the sample
mean after pass k and the baseline mean in terms of the number of standard deviations away from the sample
mean. The sample mean, after pass k, may be either less or more than the baseline mean in order for the
absolute value of the z-score to remain below a user-defined threshold [1].

4.2 Classical Sequential Analysis

Classical sequential analysis is a statistical method that evaluates data as it is obtained, as it re-computes the test
statistics each time a new data point is obtained. By using this method to assess the input data, the test does not
require a predetermined sample size before beginning. This characteristic is unique to sequential analysis and
allows the user to execute a decision earlier and with fewer observations as compared to the Z-test for
dependent data. The process consists of computing a likelihood function and defining a set of bounds based on
a and B to use in evaluating the likelihood output [2].
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4.3 Brownian Motion Drift Analysis

Brownian motion is a continuous limit of a random walk process. The sequential analysis method can be
applied to Brownian motion to test whether or not the drift of the Brownian motion process is zero. This method
is useful because it evaluates data as it is collected and allows the user to make a decision once a fixed bound
has been reached. The Brownian motion approach, however, has a specific set of requirements that must be
verified before being used for testing [3].

5.0 Hypothesis Testing Assumptions

5.1 Z-test for Dependent Data

In order to receive accurate results using the Z-test for dependent data, there are certain conditions that must be true
about the data set that will be evaluated:

»  Large sample size n for the baseline data.
*  The data points are assumed to be sampled from the same population distribution.

5.2 Classical Sequential Analysis

In order to receive accurate results using classical sequential analysis, there are certain conditions that must be true
about the data set that will be evaluated:

* 1, isindependent of r;_; in the baseline data.
*  This method does not require the data set to have a standard normal distribution.

5.3 Brownian Motion Drift Analysis

In order to apply methods applicable to Brownian motion to r;, there are certain conditions that must be true about
the data set that will be evaluated:

e Ar, isindependent of Ar,_; in the baseline data.

e Standard Normal density (pdf) of Ar values

e r(0)=0

o nt), 0 <t<ooisa continuous function of t (or time). Note that each observation Kk is associated with its
monotonically increasing value of time at which the observation was taken.

6.0 Hypothesis Testing Procedures

6.1 Z-test for Dependent Data

While describing the Z-test for dependent data, the following description considers the r¢ values, although the
procedure is the same when using the value of P(NOM| ry).

e In order to perform the Z-test for dependent data, the null hypothesis and alternate hypothesis are defined as
follows. The null hypothesis defines a state when no change has occurred. The alternative hypothesis defines a
state where change has occurred in the mean of r;, values. The estimated value of the population mean E(r;,) is
denoted as p,,, which is the sample mean. The hypothesis test is defined in order to assess if s, differs from
the baseline mean, p; .-

Null hypothesis = H, : tygso = Hi<o
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Alternative hypothesis = H, : Ugso # Hi<o

The Z-test for dependent data does require us to pick a significance level o. We will use o = .05. However, the
Z-test for dependent data does not allow us to specify B. Therefore, we will not know our type Il error for these
calculations and cannot accept our null hypothesis at any point for this method with a handle of the probability
of doing so in error.

The Z-test for dependent data algorithm starts with the given baseline data containing n observations, shown as
the green segment in Fig. 6. These data points are considered to be before the user-defined reference time, to.
The mean is calculated for the values of this data set, which provide the baseline against which the new data is
compared:

Baseline mean = u; .,, Which is estimated by the sample mean %Zgi_n T

Since the successive values of r, can be dependent, the population variance o2 is adjusted using what we will
call the “dependent variance”. This dependent variance reflects the alpha-mixing parameter, o, which specifies
how many previous passes on which each value has significant dependence. The dependent variance is
comprised of the sample variance and a term that involves covariance, which is calculated using the alpha
mixing procedure [4]. Specifically:

Dependent variance = population variance + 2*(covariance-related term)

The covariance-related term is estimated by:
1 —
(Ok<0)® = Si<o + 2% — X2 X1 [0k — Hie<o) (Tike = Hi<o)]),
SEeo = Var(Xyeo) = ﬁZEi_n(n{ — Ur<o) 2, which estimates the variance of the baseline 7;, values

The alpha mixing calculations commence when a sufficient amount of new data is received. The number of
passes that constitute sufficient new data may be a fraction of the data size in the baseline (e.g. when new data
is collected that spans a full night). When new data is received for passes 0 to k (shown in yellow color in Fig.
6), the data that spans from pass (k-n) to pass (k) is utilized to perform the assessment. The data from passes (k-
n) to 0 is from the baseline. This corresponds to the use of a sliding window of the last n observations for the
alpha mixing analysis.

For each new pass k, the value of r¢ is computed first and then used for the Z-test for dependent data
calculation. The mean is estimated for the r for the set of values from passes (n-k) to k:

. _ 1
Current sample mean after pass k = estimate of y,»o = 7, = ;Zﬁ‘:k_nﬂ Ty

The estimate of the current mean after pass k, 7y, is compared with the baseline by defining a z-score measure
(or standard score measure), which is denoted as n;, [4]:

Z-score 1y, = k<o
\m

The z-score represents the distance between the sample mean after pass k and the baseline mean in terms of the
number of standard deviations. The sample mean after pass k may be less or more than the baseline mean in
order for the absolute value of the z-score to remain below a user-defined threshold.

Each new observation for which we do not reject the null hypothesis, we continue to assume that the satellite is
NOM (i.e., unchanged from the baseline) and continue to evaluate new observations. When there is an
observation that does not satisfy the null hypothesis, it implies that the mean has changed in a statistically
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significant amount as compared to the baseline, which prompts us to reject the null hypothesis and accept the
alternative. Therefore, we can conclude the satellite is different from its state in the baseline data (i.e. the
occurrence of change) and the time slider cannot be forwarded up to the current pass k. Once we have obtained
n new observations for which we do not reject the null hypothesis, the time slider can be moved forward to the

current pass K.
¢ CE =

i Compute prior
3 [ Setpass k=0 distribution for 1, or 4

P(NOM| 1)

w

Warn User if
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ANOM

Received
data for new pass?

Compute 73, and P(NOM|r.)
for all satellites in the cluster | 0

}

Compute Z-score 1, =

Update t, to equal
the time after k-passes

Tk~ Bk<o
k<o)

7

Composite
Hypothesis
Testing

Continue Sampling

ANOM

NOM

Fig. 10. Z-test for Dependent Data Flow Chart

6.2 Classical Sequential Analysis

The classical sequential analysis method will proceed by using the r values; however, other values may also be used
as long as they are independent. The classical sequential analysis does not require the data set to have a standard
normal distribution.

e Asdescribed in Section 6.1, this method also requires the creation of a set of baseline r values. Once the
baseline has been defined, the baseline mean and standard deviation must be computed for future
calculations.

e The classical sequential analysis method does require a predetermined a and B. The test also requires a
predefined & that is fixed to be greater than zero, where delta is the number of standard deviations the
sample mean is away from the null hypothesis mean 0. For our examples, o = 0.05, § = 0.05, and & = 1.0.
Because this test allows us to determine a and B, we can quantify the P(type | error), P(type Il error) and be
able to accept the null hypothesis when necessary.

e To be able to properly use the classical sequential analysis test, a null hypothesis and alternative hypothesis
must also be defined. The null hypothesis describes a state where no change has occurred. The alternative
hypothesis describes a state where a change has occurred that is larger than the predefined . Both
hypotheses are defined below.

Null hypothesis = Ho: L = o

=Ko

Alternative hypothesis = Ha: >4

e Before the method can be evaluated, a user-defined bound must be established. The lower bound is denoted
as B and is defined by

11
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The upper bound is denoted as A and is defined by

A=LE
a
e Once a new set of data is received, the classical sequential analysis method uses a likelihood function to
evaluate the data set at each observation k. The likelihood function has a closed form expression if ry is
normally distributed; it has to be numerically computed otherwise. In this work, the likelihood function is
computed using the following equation, which is valid for normally distributed ry:

Ly =2 v 073507 (o020 4 oo Zki)y
2

o  After the likelihood function is computed, the output is evaluated according to the prefixed bounds. If the
likelihood function € (B, A) then the process continues sampling. If the likelihood function is less than or
equal to B, then the null hypothesis is accepted and thus, we conclude that no change has occurred. If the
likelihood function is greater than or equal to A, then the alternative hypothesis is accepted, and thus, we
conclude that a change has occurred.

2 Define a = 0.03, 1
B=0.05and 6=1.0

3 | Setpass, k=0 l—’ ‘('nrmerlte prinr 4
distribution for r;

wn

Warn User if
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Compute 13,
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1 & &
7 | Compute L, :%x e'?k'sz(eEZ["""‘} +ev 2("""’))

Composite ANOM
Hypothesis

Testing

Continue Sampling
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Fig. 11. Classical Sequential Analysis Flow Chart

6.3 Brownian Motion Drift Analysis

As described early, Brownian motion is a specific sequential analysis method, so its process is very similar to that of
the classical sequential analysis method. For our examples, the main difference between Brownian motion and the
classical sequential analysis is that the Brownian motion baseline is executed using the Ar,values. The creation of
the baseline is identical to that described in Section 6.1.

e Once the 1, baseline has been created, the Ar, values are computed using the equation listed below.
Ary =1, — 14

After the Ar;, baseline is generated, the mean and standard deviation of the baseline is calculated for a later
use.
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Brownian motion does require o, f and 3 to be set prior to testing. For this method, delta is defined as the
number of standard deviations that mean drift pis away from null hypothesis mean drift 0. The Brownian
motion examples have a = 0.05, p = 0.05 and & = 1.0.

A null hypothesis and alternative hypothesis must also be defined in order to proceed with Brownian
motion. The null hypothesis describes a state where no change has occurred. The alternative hypothesis
describes a state where a change has occurred. Both hypotheses are defined below.

Null hypothesis = Ho: p =0
Alternative hypothesis = Ha: [u| > & * o

Before the method can be evaluated, a user-defined bound must be established. The lower bound is denoted
as A and is defined by

A:L
1—

a

The upper bound is denoted as B and is defined by

B=1F

a

Once a new set of data is received, the Brownian motion drift method standardizes each r;, by subtracting
each r, by the value at observation 0 and then dividing by the standard deviation of the baseline. This

adjusted r value is denoted below.

Tk —To

Tk S
Opaseline

This method also uses a likelihood function to evaluate the data set at each observation k. This likelihood
function is computed using the following equation for two-sided drift analysis as explained in Section
6.3.1:

k&2 B )
L,= 05xe 2 x (3(6*7”) + e—(6*r))

After the likelihood function is computed, the output is evaluated according to the prefixed bounds. If the
likelihood function € (A, B) then the process continues sampling. If the likelihood function is less than or
equal to A, then the null hypothesis is accepted and thus, we conclude that no change has occurred. If the
likelihood function is greater than or equal to B, then the alternative hypothesis is accepted, and thus, we

conclude that a change has occurred.
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Fig. 12. Brownian Motion Drift Analysis Flow Chart

6.3.1 Two-sided Drift Analysis

Reference 3 presents a hypothesis test to detect change in drift for Brownian motion. If p, denotes the drift
corresponding to the null hypothesis and p; denotes the drift corresponding to the alternative hypothesis, then the
likelihood ratio function

LW (E); g p1y) = el@aho W ©O-Gri-ud)]

is used to test Ho: p= po vS. Ha: pu= pa for values po < pi [3]. Our process 1y, is transformed to the correct scale to be a
Brownian motion, and this likelihood ratio L(t, W (t); uo, 1) can be approximated discretely by

Ly (o, 1) = elta=ro” T+ (43— ud)]

In our case, po= 0, referring to the null hypothesis case of “no drift”, which we are equating to the NOM state.
However, we are interested in a test for Ho: p = 0vs. Ha: || >p1 for some value py> 0.

Note that our process r was normalized to be a Brownian motion (with scale o =1), and we are testing the alternative
hypothesis | 1 > o.

Following the idea presented in [2] to extend a likelihood ratio test for a 1-sided alternative to a test for a 2-sided
alternative, we compute a new likelihood ratio function as follows. The numerator is the sum of the likelihood
functions (i.e. joint densities) associated with p = & and p = -8, each multiplied by probability 0.5. The denominator
is the likelihood function associated with u = 0. Dividing the denominator into both numerators results in the
expression being the sum of two likelihood ratio functions corresponding to the alternative hypotheses p=dand p =-
8, respectively.

That is, Ly (@, pt1) for our 2-sided case with po=0 and p1 =+/- § becomes
Lk(”o' .ul) = 5% Lk(oi 6) + 5= Lk(oi _6)
= 5+« e[(_(s)* rk_g* 82] + 5% e[(ts)* rk_g* 82]
= 5% e[_ g* 62] * (e[_s*rk] + e[s*rk])

,which is the formula mentioned above.
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6.4 A Note on the Use of the Brightness Ratio during Hypothesis Testing

The Brightness Ratio is defined in Section 2.0. Note r;, is not symmetric. For example, if I, =5 * I, then r, =
4 but if Iy, = 5% Iy, then r, = —g = —0.8. The range of values we consider to be acceptable for r; is (-0.6,

1.5). Although the r values are asymmetric, this characteristic is only of concern during the classical sequential
analysis test. This is the case because the Z-test for dependent data has a test statistic that is normal due to the
Central Limit Theorem for Dependent Data, irrespective of distribution. Similarly, the Brownian motion drift
analysis is computed only on the delta r values, which can be independent and normally distributed regardless of
the probability distribution of the r values. Thus, the classical sequential analysis method applied to r is the only
method that may be affected by the asymmetry. However, classical sequential analysis does not require the data set
to be sampled from a normal distribution. For future work in this case, the likelihood function used in the classical
sequential analysis will be derived from the population distribution via an empirical probability density function.

7.0 Cross-tag Resolution Method

7.1 Overview

Once the results from the three methods have been obtained, we can begin analysis. If all three methods determine a
satellite is ANOM, then we can conclude the satellite has changed in some way. One way the satellite can change is
due to a cross-tag with one of its peer satellites. This means the satellite has been miss identified as another satellite
in its cluster. This method helps to resolve those situations.

7.2 Methods

Suppose the three methods have determined at least one of the satellites is ANOM. Then, we must try to determine
the change in that satellite. If two satellites are determined to be ANOM by all three tests or one satellite is
determined to be ANOM and the other satellite’s state cannot be determined, then we can use the cross-tag
resolution method to determine if the cause of ANOM is due to a cross-tag. When two satellites are determined to be
ANOM by at least one test, we can take the new data from the two satellites and swap them. Thus, the baseline of
the first satellite is now paired with the new data of the second satellite, while the baseline of the second satellite is
paired with the new data of the first satellite. The three methods can be run again on these new pairs of data to see if
this swap resolved the cross-tag.

7.3 Assumptions

The present work assumes if a cross-tag does occur the cross-tag occurred during the daytime gap. Fig. 2 - Fig. 4
illustrate the reason for this assumption. The baseline data for each satellite concludes at the end of a night’s
observations, and the new day begins at the start of the next night. Therefore, when the three methods are performed,
a result is obtained and applied to all the new data since the beginning of that night. Thus, we conclude something
changed during the daytime gap.

7.4 Procedures

After the composite hypothesis test has determined at least one satellite to be ANOM, we must try to determine the
changes in the satellite. If there is a second satellite which is determined to be ANOM, or no conclusion could be
reached, then we can use the two not NOM satellites in this cross-tag resolution method. The procedure’s steps are
listed in order below.

1. Swap the new observations for the two satellites, S; and S,. Thus, the baseline of satellite S; is now paired
with the new data of satellite S,, while the baseline of S; is paired with the new data of S.

2. Compute the prior distribution for the values being used: 7y, Ary, or P(NOM | ry).

3. Perform the three methods again as described in Sections 6.1 and 6.2.
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4. Analyze the new results. If all three tests now conclude NOM for either satellite, say Si, then there was a
cross-tag present. If one of the satellites is still ANOM, say S,, and there was a third satellite, Ss, in the
cluster that was not NOM, then we can perform another swap. We can swap the new data of S, after the
first swap with the new data of Sz by completing steps 1 - 4 again. However, if the results still conclude not
NOM for both satellites, then we cannot determine if there was a cross-tag and it is likely that the cause
could be from a different cross-tag scenario or that a different change had occurred in the satellite.

Once all the possible cross-tag situations have been tested for all satellites in the cluster that were determined to not
be NOM by the composite hypothesis test, we have a better understanding of which satellites were cross-tagged and
have resolved the cross-tag so we are associating the data to the right object.

7.5 Confidence Assessment

To be able to utilize the cross-tag resolution method described above, the composite hypothesis test used to
determine whether or not we believe that a particular satellite has changed from what is believed to be its NOM state
must be assigned a level of confidence. Suppose that each hypothesis test is performed at significance level a and
that the null hypothesis H, reflects that the satellite is NOM. Significance level a means that there is only a
probability that the test will incorrectly conclude that the satellite is ANOM, when in reality it is NOM; i.e. & = P
(test rejects Ho | Ho is true).

Recall that if at least one of the tests concludes that the satellite is ANOM, we will not conclude that the satellite is
NOM. It is of interest to know the probability of type I error of this sort of conclusion. To this end, we compute the
probability that we will not conclude that the satellite is NOM, when in reality the satellite is NOM as follows:

P(at least one of the 3 tests incorrectly conludes that the satellite is ANOM | satellite is NOM)

= P(null hypothesis is rejected in at least one of the 3 hypothesis tests |H, is true)

=P ( U {test i rejects Hy}
i

Hyis true) < Z P(testirejects Hy | Hy is true)
i

- Zi(“)

=3a

This means that the composite test for whether or not the satellite is NOM using the group of 3 tests performed
individually at level o has an overall significance level of less than or equal to 3a.

For the current case, we perform the 3 tests on a single satellite at level 0.05. Moreover, suppose that at least 1 of
the 3 tests results in a rejection of the null hypothesis that the satellite is NOM. If we use this criterion of “at least
one rejection” necessary to conclude that the satellite is not NOM, then our method has reached the conclusion: “we
cannot conclude that the satellite is NOM”. Using the above calculation, we recognize that our method has less than
or equal to 0.15 probability of failing to conclude that the satellite is not NOM, when in reality it is NOM.

Additionally, we are interested in knowing the probability that the composite test method correctly concludes that
the satellite is NOM, which would be the case if all three tests conclude to not reject the null hypothesis of NOM. In
other words, what is the P(all 3 tests correctly result in non-rejection of null hypothesis that satellite is NOM |
satellite is NOM)? To compute this number, we use the complement rule and the above computation as follows:

P(all 3 tests correctly result in non rejection of the null hypothesis that the satellite is NOM | satellite is NOM)
= 1 — P(null hypothesis is rejected in at least one of the 3 tests of H, |H, is true)
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=1-P ( U {test i rejects Hy}| Hy is true) = Z P(test i rejects Hy | Hy is true)
i i

=1-3a

In other words, we perform the 3 tests on a single satellite at level 0.05. Moreover, suppose that none of the 3 tests
results in a rejection of the null hypothesis that the satellite is NOM. Using our composite testing methods, we are
led to conclude that the satellite is NOM. By the above computation, we recognize that our method has at least a
0.85 probability of correctly concluding that satellite is NOM.

8.0 Examples

To illustrate the three methods described in Section 4.0, we will consider the three satellite cluster shown previously
in Fig. 5. The three satellites denoted as Si, Sz, and Ss, and their signatures are displayed in Fig. 13 - Fig. 15. This is
the same data as in Fig. 2 - Fig. 4. The observations were simulated as taken from a space-based sensor. The
observations for S; span 7 days, while the observations for S; and Sz only span 5 days. The number of days of
observation can be visualized by counting the daytime gaps in Fig. 2 - Fig. 4.

Each data set was divided into two parts. The first portion was used to simulate a set of baseline data. A baseline is
data which has been reviewed by a human or passed a collection of statistical tests in order to verify which satellite
the observations belong to and that the satellite’s state is nominal (i.e., NOM). The second portion of data represents
the new incoming observations for that satellite. The baseline is used to determine what results we can expect for a
particular satellite, and these expectations can be used to verify the current state of the satellite from the new
observations. Fig. 13 - Fig. 15 display the three data sets used for the examples. The blue points in each graph
represent the observations used as the baseline for that satellite, while the red points represent the new observations
which are being tested with each of the three methods.
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Once the baseline and the new data sets were created for each satellite, the baseline values were further reduced by
randomly selecting points from the data. Since there is no guarantee how much data will be provided, we want to
use these tests on the minimum amount of data, so we generate sparse baseline data sets of 31 or 32 points. This
way, even when using the differences in the r¢ values, we will still have 30 points and the Central Limit Theorem for
Dependent Data will be valid for the Z-test method. To generate the sparse data, we sorted by orbit angle. We took
the total number of points divided by 30 to determine how often to select an observation. Then, we randomly
selected a point that frequently to get 31 or 32 observations. The resulting signature graphs for the three satellites are
shown in Fig. 16 - Fig. 18. This reduced data was utilized in order to perform the change detection and data
association.

18
AMOS Technical Conference 2015



S, Sparse Signature Plot
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From the three data sets, we can construct 6 more data sets. From these 9 data sets, we can create 6 different
potential cross-tag situations which are displayed in Table 1. The analysis of these six cases and their resolutions are
presented in section 8.0. Each example describes how a cross-tag anomaly is resolved to allow for correct data
association. Section 9.0 describes an efficient way to collect data using maximum information entropy.

Table 1. Possible Cross-tag Situations

Example | Satellite S;: Satellite S;: Satellite Ss:
1 NOM NOM NOM
2 Cross-tagged as S, Cross-tagged as S; NOM
3 Cross-tagged as Sz NOM Cross-tagged as S1
4 NOM Cross-tagged as Ss Cross-tagged as S,
5 Cross-tagged as S Cross-tagged as Ss Cross-tagged as S1
6 Cross-tagged as Sz Cross-tagged as S; Cross-tagged as S»

8.1 Method Parameters

8.1.1 Z-test for Dependent Data

The Z-test used here is based on a Central Limit Theorem for dependent data. There are no population assumptions
necessary, but if the sample size is sufficiently large, the sample mean values have an approximately normal
distribution from the Central Limit Theorem. Therefore, as long as we have at least 30 values, it is reasonable to
apply the Central Limit Theorem for dependent data. For the examples, we will use the Z-test for dependent data on
both the r values and the P(NOM]ri) values.

8.1.2 Classical Sequential Analysis

The classical sequential analysis method has one main assumption, and it is that the observed sequence values are
independent. To determine if the ry values or the Ary values are independent or not, we use the sample correlation.
We also create a histogram of the values to evaluate if it is approximately normal. If the random variables appear to
be uncorrelated with an approximately normal distribution, then we will assume independence and can use those
values for the classical sequential analysis method. The sparse baseline r values are shown in Fig. 19 - Fig. 21.
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S; Sparse Baseline r Values
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To determine if the r and ry.1 values are correlated, we first calculated the correlation coefficient for each satellite
for the sparse baseline values. Then, we used a t-test with o = 0.05 on the null hypothesis that the correlation
coefficient is equal to zero. The results for the r values are in Table 2, while the results for the Ar values are in Table

Fig. 21. Satellite Ss Sparse r Baseline
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3. If the correlation coefficient is within the non-rejection region of the t-test determined by o = 0.05, then we cannot

reject the null hypothesis that the correlation coefficient is zero and therefore, that the values are uncorrelated.

Table 2. r Value Correlation Results

Satellite Correlation Test statistic Non-rejection Conclusion
Coefficient value Region

S1 -0.3521 -2.0259 (-2.045, 2.045) uncorrelated

S 0.0007 0.0035 (-2.048, 2.048) uncorrelated

Ss 0.3005 1.6969 (-2.045, 2.045) uncorrelated

Table 3. Ar Value Correlation Results

Satellite Correlation Test statistic Non-rejection Conclusion
Coefficient value Region

S1 -0.7021 -5.2176 (-2.048, 2.048) correlated

S -0.6946 -5.0169 (-2.052, 2.052) correlated

Ss -0.1704 -0.9313 (-2.048, 2.048) uncorrelated

Looking at Table 2, we see that by the t-test the baseline r values for all three satellites are uncorrelated. However,
Table 3 shows us that the Ar values are only uncorrelated for Ss. Thus, we can use the classical sequential analysis
on all three satellites for their r values, but we can only use it on the Ar values for Ss.

The data being uncorrelated is a necessary condition for the data to be independent, but to assure the data is
independent, we must also satisfy a sufficient condition, such as the data is normally distributed. To determine if the
sparse baseline r values are approximately normal, we plotted the histogram of the r values from Fig. 19 - Fig. 21.
Fig. 22 shows the histogram of the baseline values for S1, and the histogram supports normality. Fig. 23 displays the
r value histogram for Sy, and it also supports normality. Fig. 24 illustrates the r value histogram for Ss. It does not

appear normal. We will proceed with the assumptions that S; and S, are normal distributed.

r Value Frequency
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Fig. 24. Histogram of Sz Baseline r Values

The full baseline for the Ar values is displayed in Fig. 25, and their histogram is shown in Fig. 26 to better
demonstrate that the Ar values for Sz are approximately normal. Therefore, we can assume the Ar values for S; are
independent and use them for the classical sequential analysis method.
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8.1.3 Brownian Motion Drift Analysis

The Brownian motion drift method requires the most assumptions. It requires the difference in values (between
consecutive observation points) to be independent and normally distributed. Thus, if we are to use the r values for
Brownian motion, then the Ar values must be independent and normally distributed. Unfortunately, for these
examples the Ar values for S; and S, are not independent, since they are correlated, as demonstrated in Table 3.
Therefore, we cannot use the Brownian motion method for S; and S,. The Ar values for Sz are independent and
normally distributed as described in Section 8.1.2, so we can use the Brownian motion drift analysis for Sa.

8.2 Examplel

The examples consider that a regular but sparse collection of data is ongoing. Example 1 is the situation where all
three satellites are still NOM. Therefore, there are no cross-tags present as seen in Fig. 27. The results are shown
when 30 (i.e. k = 30) new observation data points have been collected. Note that the use of k = 30 is only meant for

illustration. The same calculations are valid for any value of k = 0.
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Fig. 27. Example 1 Input Data

8.2.1 Z-testonr Values

Fig. 28 - Fig. 30 demonstrate the results of the Z-test for dependent data on r values for Example 1. Since the state of
all three satellites remains NOM, we expect the Z-test for dependent data to determine that we should accept the null
hypothesis, Ho. By looking at the three figures, we see that this is indeed the case for Satellite 1 and Satellite 2.
However, Satellite 3 rejects the null hypothesis and concludes the satellite occurred a change at k=9 (or, for the
cases when k < 9, this test would have determined Satellite 3 to be NOM). This conclusion can be further explained
by referring to Fig. 15. In this plot, the new data’s peaks align with the baseline’s valleys, so the method is unable to
detect NOM up to k = 30.
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Fig. 28. Example 1 Si.1 Z-test on r values Results
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S, Z-test (r values) Results
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8.2.2 Classical Sequential Analysis

Fig. 31 - Fig. 33 demonstrate the results of the classical sequential analysis method for Example 1. Since the state of
all three satellites remains NOM, we expect the classical sequential analysis to determine we should accept the null

hypothesis, Ho. By looking at the three figures, we see that this is the case for all the satellites. Thus, the classical

sequential analysis provides us with the correct results for Example 1.
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S; Classical Sequential Analysis Results
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8.2.3 Brownian Motion Drift Analysis

Fig. 34 shows the results of the Brownian motion drift analysis for Example 1 for Ss. Since all three satellites remain
NOM, we expect the Brownian motion test to conclude that we should accept H, and match the classical sequential
analysis results. From Fig. 34, we see this is the case, and the Brownian motion test provides us with consistent

results for Example 1.
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Fig. 34. Example 1 Szs Brownian Motion Results

8.2.4 Z-test on P(NOMI|r) Values

Fig. 35 - Fig. 37 demonstrate the results of the Z-test for dependent data method performed on the P(NOM|r) values

for Example 1. Since the state of all three satellites remains NOM, we expect the Z-test for dependent data to
determine that we should accept the null hypothesis, Ho. By looking at the three figures, we see that this is the case

for all the satellites. Thus, the Z-test for dependent data on the P(NOM|r) values provides us with the correct results

for Example 1.
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S, Z-test P(NOM|r) Results
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8.2.5 Data Association

Table 4 shows the results for the three tests we are able to perform on all three satellites. For Si, all three tests
conclude it is still NOM, so we will accept that S; is NOM. All three tests also conclude S; is still NOM, so we will
accept that it is also NOM. For S3 the Z-test for dependent data on r values concluded it was ANOM. Since both of
the other two satellites are NOM, we know that S is not cross-tagged with another satellite in its cluster, but we do
not know whether the satellite is truly NOM or if something else has happened, such as a panel offset change, to
cause the satellite to now be ANOM. This is addressed in Section 7.

Table 4. Example

1 Results Chart

Satellite r Value Z-test Classical Sequential P(NOM]Jr) Z-test
Analysis

S1 NOM NOM NOM

S2 NOM NOM NOM

S3 ANOM NOM NOM
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8.3 Example 2

Example 2 is where the baseline data for S; is paired with the new data from S; (orange box), which we will denote
as Si1-2 and is shown in Fig. 39.The baseline data for S; is paired with the new data from S; (yellow box), denoted as
Sz-1as shown in Fig. 40. This creates a cross-tag between S; and S;. Fig. 38 depicts the new input data for Example
2. Fig. 39 and Fig. 40 show how the signature of the baseline satellite matches the signature of the satellite of the
new observations. For Si.; and S».1, the signatures do not have significant overlap, so we expect all four methods to
produce accurate results because the r and P( NOM | r ) values should be distinct. Lastly, the baseline of Ss is paired
correctly with the new data from S; (magenta box), so S is still NOM.

Example 2
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Fig. 38. Example 2 Input Data
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Fig. 39. S1-2 Signatures
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8.3.1 Z-teston r values

The Z-test for dependent data results using the r values for Example 2 are shown in Fig. 41 - Fig. 43. Since there is a
cross-tag between S; and Sy, we expect to accept Ha for S; and S, and accept H, for S3.The Z-test does correctly
conclude Ha for S; and Sz; however, as in Example 1, Ss is cross-tagged with itself, so the reason we accept H, is

stated in Section 8.2.1.
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==z score
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Fig. 41. Example 2 Si2 Z-test on r values Results

AMOS Technical Conference 2015

31



S, Z-test (r values) Results
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Fig. 42. Example 2 Sz.1 Z-test on r values Results
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Fig. 43. Example 2 Ss-3 Z-test on r values Results

8.3.2 Classical Sequential Analysis

The classical sequential analysis results for Example 2 are shown in Fig. 44 - Fig. 46. Since there is a cross-tag
between S; and S,, we expect to accept H, for S; and S, and accept H, for Sz. By looking at the three figures, we see
that this is the case. Thus, the classical sequential analysis provides us with the correct results for Example 2.
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r Values

S, Classical Sequential Analysis Results

1.6 1.4E+71
1.4 - 1.2E+71
12 L 1E+T1

1 - 8E+70
0.8

6E+70
0.6
- 4E+

04 4E+70
02 - 2E+70

0 REPSSS00000000000000000004 "
02 5 10 15 20 25 30

Observation Number

Likelihood Function

—-New Data
——Likelihood Results

Decision made at
Observation #4.
Accept Ha.

Fig. 45. Example 2 Sz-1 Classical Sequential Analysis Results

Ar Values

25

S; Classical Sequential Analysis Results

Decision made at
Observation #8.
Accept Ho.

Observation Number

1.2

0.8

0.6

0.4

0.2

-0.2

—@-New Daia
—4—Likelihood Results

Likelihood Function

Fig. 46. Example 2 S3-3 Classical Sequential Analysis Results

AMOS Technical Conference 2015

33



8.3.3 Brownian Motion Drift Analysis

The Brownian motion drift analysis result for Example 2 is shown in Fig. 47. Ss is paired with itself, so we expect to
accept Ho. Fig. 47 indicates this is the case, so Brownian motion provides the correct result for S; by concluding that

the drift is zero.

Adjusted r Values

th

S; Brownian Motion Results
14

Decision made at
Observation #9. 12
Accept Ho.

Observation Number

—-New Data
=+ Likelihood Results

Likelihood Function

Fig. 47. Example 2 Sz-3 Brownian Motion Results

8.3.4 Z-test on P(NOM]|r) Values

The Z-test for dependent data results for Example 2 are shown in Fig. 48 - Fig. 50. Since there is a cross-tag between
S1 and S, we expect to accept H, for S; and S; and accept H, for Sz. By examining the three figures below, we see
that the Z-test for dependent data performed on the P(NOM]|r) values accepts Ha for S; and S, and accepts H, for Sa.
Thus, the Z-test for dependent data provides accurate results for Example 2.
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Fig. 48. Example 2 Si2 Z-test on P(NOM|r) Results
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S, Z-test P(NOM|r) Results
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Fig. 49. Example 2 Sz-1 Z-test on P(NOM|r) Results
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Fig. 50. Example 2 Sz3 Z-test on P(NOMI|r) Results

8.3.5 Data Association

Table 5 summarizes the results for the three main tests. For Sy and Sy, all three tests conclude ANOM, so we accept
that they are both ANOM. For Ss, two tests conclude NOM and one ANOM, so we cannot conclude whether Ss is
NOM or ANOM. To try to resolve the change in satellites S; and S;, we swap their new data, so the new data we
were using for S (orange box) we will use for S; and the new data we were using for S, (yellow box) we will use
for S1. Thus, we result with the same situation as Example 1 as seen below in Fig. 51. Therefore, we can conclude
that in the original data for Example 2 S; and S, were cross-tagged, but after resolving the cross-tag, Si and S; are
NOM and we are unsure about Sz, although we know it is not cross-tagged.

Table 5. Example 2 Results Chart

Satellite r Value Z-test Classical Sequential P(NOM]|r) Z-test
Analysis

S1 ANOM ANOM ANOM

S2 ANOM ANOM ANOM

S3 ANOM NOM NOM
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Example 2 Cross-tag Resolution

New Dat S, New Dat
Sl Baseline S, New Data 1 New Data
|
l' I
. S; New Data S, New Data
82 Baseline

S3 53 New Data SJ New Data

Fig. 51. Example 2 Cross-tag Resolution
8.4 Example 3

Example 3 contains a single cross-tag between S; and Ss, so the baseline data for S; is paired with the new data from
Ss (magenta box), Si-3 is shown in Fig. 53, and the baseline data for Sz is paired with the new data from S; (yellow
box); Sa.1 is shown in Fig. 54. Sy, in this case, is still NOM. The input data for example 3 is illustrated in Fig. 52.
Unlike the cross-tag between S; and Sz, where there was little overlap in the satellites’ signatures, Fig. 53 and Fig. 54
show there is some overlap for the signatures of S; and Sz. Therefore, the methods in this section might have a
harder time distinguishing between the two satellites.

Example 3
. S; New Data
S 1 Baseline
S, New Dat
2
New D

Fig. 52. Example 3 Input Data
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Fig. 53. S1.3 Signatures
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Fig. 54. Ss.1 Signatures

8.4.1 Z-teston r values

The Z-test for dependent data on r values results are provided in Fig. 55 - Fig. 57. Because S; and Sz are cross-
tagged, we anticipate this method to accept Ha for S; and Sz and accept H, for S,. Thus, the Z-test for dependent data
executed on r values provides accurate results for all three cases in Example 3.
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Fig. 55. Example 3 Si-3 Z-test on r values Results
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Fig. 56. Example 3 S22 Z-test on r values Results
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Fig. 57. Example 3 Sz.1 Z-test on r values Results

8.4.2 Classical Sequential Analysis

Example 3 contains a cross-tag between S; and Sz, S0 we expect to accept Ha for S; and Ss and accept H, for S,. The
classical sequential analysis results for this example are shown in Fig. 58 - Fig. 60, and although it took longer to
determine S; is NOM, we get the results we expect.
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Fig. 59. Example 3 S22 Classical Sequential Analysis Results
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Fig. 60. Example 3 S3.1 Classical Sequential Analysis Results
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8.4.3 Brownian Motion Drift Analysis

The result of the Brownian drift motion analysis for Example 3 is displayed in Fig. 61. The results for S; accurately
conclude to accept Ha and confirm that there is a non-zero drift.

S; Brownian Motion Results
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Fig. 61. Example 3 Sz.1 Brownian Motion Results

8.4.4 Z-test on P(NOMI|r) Values

The results for the Z-test for dependent data method performed on the P(NOM]|r) values are shown in Fig. 62 - Fig.
64. In this example, S; and Ss are cross-tagged, so we expect the test to accept Ha for S; and Ss. Conversely, S;
receives new data from itself, so the test should accept the null hypothesis. Displayed below, the test correctly
concludes to accept H, for S; and accept H, for S,. The graph for Ss, on the other hand, accepts the null hypothesis,

which does not correspond to what is expected.
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: : : : 0.05

\\i 10 15 200 25 30 35
-200 \\ 0.04
400 0.03

. 3
=
g \ :
o o~
&£ -600 0.02 § —4—2z score
N \‘ © —E=P(NOMJ) values
800 Detects ANOM at | | Ty, 0.01 QZ‘;’
Observation #1 :
-1000 - -0
-1200 -0.01

Observation Number

Fig. 62 Example 3 Si1.3 Z-test on P(NOM|r) Results
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S, Z-test P(NOM|r) Results
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Fig. 64 Example 3 S3.1 Z-test on P(NOM|r) Results

8.4.5 Data Association

Table 6 displays the overall results for Example 3. All three methods determine S; is ANOM and S; is NOM, so we
will accept these conclusions. Only two methods conclude ANOM for Ss, so we are unsure of the state of Ss. To try
to resolve why S; is ANOM we can swap its new data (magenta box) with the new data of Ss (yellow box). Since
Example 3 was created by swapping the new data of S; and Ss, this swap will correct the cross-tag, and we will have
Example 1 again as seen in Fig. 65.

Table 6. Example 3 Results Chart

Satellite r Value Z-test Classical Sequential P(NOM]|r) Z-test
Analysis

S1 ANOM ANOM ANOM

S, NOM NOM NOM

Ss3 ANOM ANOM NOM
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Example 3 Cross-tag Resolution

, S; New Data S, New Data
S 1 Baseline
D New D
. S; New Data S; New Data
S 3 Baseline

Fig. 65. Example 3 Cross-tag Resolution

8.5 Example 4

Example 4 is the last example with a single cross-tag. The cross-tag is between S, and Ss, so the baseline data for S
is paired with the new data from S; (magenta box), Sz-3 shown in Fig. 67, and the baseline data for Ss is paired with
the new data from S, (orange box), Ss.2 shown in Fig. 68. Thus, S1 is NOM. The cross-tag between S; and S; has
considerable overlap for the signatures of S; and Ss as can be seen in Fig. 67 and Fig. 68. Therefore, the methods
have a harder time distinguishing between the two satellites, and consequently, they might not be able to detect the
cross-tag.

Example 4

. S, New Data
Baseline

. S; New Data
Baseline

S, New Data

Baseline

Fig. 66. Example 4 Input Data
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Fig. 67. S2.3 Signatures
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Fig. 68. Ss-2 Signatures

8.5.1 Z-teston r values

The results for the Z-test for dependent data on r values are shown in Fig. 69 - Fig. 71. Because S, and Sz are cross-
tagged in Example 4, our test is correct in concluding to accept Ha for S; and Ss and to accept H, for Si. Sy.3 does
take more than the expected number of observations to reach a decision, but the reasoning for this is that the
signatures are very similar to one another as seen in Fig. 67.
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S, Z-test (r values) Results
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Fig. 69. Example 4 S1.1 Z-test on r values Results
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Fig. 70. Example 4 Sz-3 Z-test on r values Results
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S; Z-test (r values) Results
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Fig. 71. Example 4 S3» Z-test on r values Results

8.5.2 Classical Sequential Analysis

For Example 4, we expect to accept Ha for S; and Ss and to accept H, for S, because S, and Ss are cross-tagged.
Unfortunately, Fig. 72 - Fig. 74 show that the classical sequential analysis could not find the cross-tag for S,.3 or Ss.
2. However, for Ss.o, if we update the slider by moving it forward to halfway between the start of the new data and
the initial conclusion to accept Ho and then restart the method over again, the second run of the classical sequential
analysis accepts Ha at observation 10. Similarly, if we update the time slider for S,.3, we would eventually obtain the
conclusion to accept Ha at observation 24, but it takes several updates of the time slider. The classical sequential
analysis has difficulty, especially for S.3, because of the orbit angle of the new observations. Observations 0 through
22 are in the orbit angle range -75 to -45, and Fig. 67 illustrates that the signatures of S, and S; at these orbit angles
are very similar. This causes the r values that we are testing to be similar, so the test is unable to detect a change.
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Fig. 72. Example 4 Si.1 Classical Sequential Analysis Results
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S, Classical Sequential Analysis Results
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Fig. 73. Example 4 Sz3 Classical Sequential Analysis Results
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Fig. 74. Example 4 Ss» Classical Sequential Analysis Results

8.5.3 Brownian Motion Drift Analysis

The result for Example 4 for the Brownian motion drift analysis is better for S; than the classical sequential analysis
results. Unlike the classical sequential analysis method, where we had to update the time slider, we can accept Ha for

Ss the first time we run the test.
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Fig. 75. Example 4 Sz Brownian Motion Results

8.5.4 Z-test on P(NOMI|r) Values

In Example 4, S; and Sz are cross-tagged, so the Z-test for dependent data on P(NOM]|r) values results are expected
to accept H, for S; and accept H, for S; and Ss. The results for this method are shown in Fig. 76 - Fig. 78. The test
for this example correctly concludes H, for S; and H, for S; and Ss. Although it does take Sz more observations than
expected to come to a decision, we are attributing this to the similarities in their signatures in Fig. 68.
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Fig. 76. Example 4 S1.1 Z-test on P(NOM|r) Results
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Fig. 78. Example 4 S3» Z-test on P(NOM|r) Results

8.5.5 Data Association

Table 7 displays the results for Example 4. The only conclusion all three tests agree on is that S; is NOM. For both
Sy and S; the classical sequential analysis method determines NOM, while the other two methods determine ANOM.
Thus, the only conclusion we can come to is that S; is NOM. If we want to try to resolve the potential change of S
and Ss, then we could try and swap their new data and run the tests again. Upon swapping the new data, we actually
would reverse the cross-tag created for Example 4, and therefore, we would again end up with Example 1. The data

swap is illustrated in Fig. 79.

Table 7. Example 4 Results Chart

Satellite r Value Z-test Classical Sequential P(NOM]|r) Z-test
Analysis

S1 NOM NOM NOM

S, ANOM NOM ANOM

Ss3 ANOM NOM ANOM
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Example 4 Cross-tag Resolution

S 1 S] R S] rew b
Sz S3 New Data = Sl New Data

. S, New Data S; New Data
S 3 Baseline

Fig. 79. Example 4 Cross-tag Resolution

8.6 Example5

Example 5 contains a multi-satellite cross-tag. The baseline data for S; is paired with the new data from S, (orange
box), denoted as Si-,, the baseline data for S is paired with the new data from S; (magenta box), denoted as S-3, and
the baseline data for Ss is paired with the new data from S; (yellow box), denoted as Ss.;. Therefore, there are no

NOM satellites in this example.

Example 5
New Dat
Sl Baseline S, New Data
. S; New Data
S Baseline
2
S; New Data

S 3 Baseline

Fig. 80. Example 5 Input Data

8.6.1 Z-teston r values

For the Z-test for dependent data on r values, the results are displayed in Fig. 81 - Fig. 83. This method has three
different cross-tagged situations, and the test accurately accepts the alternative hypothesis for Si, Sy, and Sa.

Therefore, the Z-test for dependent data on r values is correct for all cases in Example 5.
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Fig. 82. Example 5 Sz-3 Z-test on r values Results
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Fig. 83. Example 5 Sz1 Z-test on r values Results

AMOS Technical Conference 2015




8.6.2 Classical Sequential Analysis

The classical sequential analysis results for Example 5 are shown in Fig. 84 - Fig. 86. Although we expect to accept
Ha for all three satellites, we only accept Ha for S; and Ss. The classical sequential analysis method is unable to
determine the cross-tag for S,. The reasons for this are discussed in Section 8.5.2.
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Fig. 84. Example 5 Si-» Classical Sequential Analysis Results

r Values

16

14

S, Classical Sequential Analysis Results

Decision is made at
Observation #8.
Accept Ho.

15

Observation Number

TE+114

6E+114

SE+114

4E+114

3E+114

2E+114

1E+114

-1E+114

Likelihood Function

——New Data
~+#—Likelihood Results

Fig. 85. Example 5 Sz-3 Classical Sequential Analysis Results

AMOS Technical Conference 2015

51



S; Classsical Sequential Analysis Results
160 TE+97
Decision is made at
120 Observation #8. G6E+97
Accept Ha.
80 SE+97
=
2
40 4E+97 2
g S
3 =
T'; 0 - 3E+97 z —l-New Data
= 0 15 20 25 3 £  —+Likelihood Results
40 2E+97 %
=5
-80 1E+97 =
-120 -0
-160 -1E+97
Observation Number

Fig. 86. Example 5 S3.1 Classical Sequential Analysis Results

8.6.3 Brownian Motion Drift Analysis

The result for Example 5 for Brownian motion drift analysis is seen in Fig. 87. The Brownian motion drift analysis
correctly accepts H, for Ss.
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Fig. 87. Example 5 Sz-1 Brownian Motion Results

8.6.4 Z-test on P(NOM|r) Values

The results for the Z-test for dependent data on P(NOM]r) values are shown in Fig. 88 - Fig. 90. The test correctly
identifies ANOM for S; and S,. However, the Z-test for dependent data accepts H, for Sz, which is not consistent
with the results the test would expect.
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8.6.5 Data Association

Table 8 summarizes the results for Example 5. All tests conclude S is ANOM, but they do not all agree for S, and
Ss. Therefore, we can only conclude S; is ANOM. To try and resolve that S; is ANOM, we can swap its new data
(orange box) with one of the other two satellites. Unfortunately, both of the other satellites have two ANOM results
and one NOM result, so there is no clue as which one to swap with S;. Let us swap the new data of S; (orange box)
with the new data of S; (magenta box). Since S; is cross-tagged with S,, upon swapping the data and running the
tests again, we would now conclude S, is NOM. Since the new data of S; was Ss, when we swap the data S;
becomes cross-tagged with S; instead of S,. Ss is already cross-tagged with Si, so we have Example 3 again. Section
8.4.5 describes how to resolve Example 3. Once the Example 3 cross-tag is resolved, Fig. 91 demonstrates the case
of Example 1.

Table 8. Example 5 Results Chart

Satellite r Value Z-test Classical Sequential P(NOMIr) Z-test
Analysis
S1 ANOM ANOM ANOM
S ANOM NOM ANOM
S3 ANOM ANOM NOM
Example 5 Cross-tag Resolution

. S, New Data S, New Data
Sl Baseline

. S, New Dat
5, Newbia | g SiNewData

. S, New Data S; New Data
S3 Baseline

Fig. 91. Example 5 Cross-tag Resolution
8.7 Example 6

Example 6 contains a multi-satellite cross-tag. The baseline data for S; is paired with the new data from S; (magenta
box), denoted as Si.3, the baseline data for S; is paired with the new data from S; (yellow box), denoted as S;.1, and
the baseline data for Ss is paired with the new data from S; (orange box), denoted as Ss... Thus, there are no NOM
satellites in this example. Fig. 92 illustrates the new input data for Example 6.
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Example 6

. S; New Data
Baseline
. S; New Data
Baseline
S, New Data

Baseline

S3

Fig. 92. Example 6 Input Data

8.7.1 Z-test on r values

Example 6 results for the Z-test for dependent data on r values are shown in Fig. 93 - Fig. 95. All three cases are
expected to accept the alternative hypothesis. As seen below, Si, S; and Sz conclude to accept Ha. Thus, the Z-test
for dependent data on r values is accurate for Example 6.
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Fig. 93. Example 6 Si-3 Z-test on r values Results
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Fig. 95. Example 6 Sz Z-test on r values Results

8.7.2 Classical Sequential Analysis

The classical sequential analysis results for Example 6 are displayed in Fig. 96 - Fig. 98. Although we expect all
three cases to conclude ANOM, the test for Sz accepts Ho. The reasons for this are described in Section 8.5.2.
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Fig. 96. Example 6 Si-3 Classical Sequential Analysis Results
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Fig. 98. Example 6 Ss» Classical Sequential Analysis Results

8.7.3 Brownian Motion Drift Analysis
The Brownian motion drift analysis result for Example 6 is shown below in Fig. 99. Brownian motion correctly
accepts Ha, so its results for Sz are better than those of the classical sequential analysis.

57
AMOS Technical Conference 2015



70

60

50 4

40

30

20

Adjusted r Values

-20

' 0»»&.«11

S; Brownian Motion Results

Decision is made
at Observation #6.
Accept Ha.

Observation Number

SE+22

4E+22

3E+22

2E+22

1E+22

-1E+22

Likelihood Function

—#-New Data
—+—Likelihood Results

Fig. 99. Example 6 Sz» Brownian Motion Results

8.7.4 Z-test on P(NOMI|r) Values

In this example, the Z-test for dependent data on P(NOM]|r) values accepts the alternative hypothesis for Si, S, and
Ss. Because all three satellites have been cross-tagged with one another, this method provides accurate results for all
three cases. The Ss., cross-tag situation does take significantly longer to detect ANOM compared to the other two
cases. However, this is a result of the similar signatures graphs in Fig. 68. The results for the Z-test for dependent
data on P(NOM]r) values are shown in Fig. 100 - Fig. 102.
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Fig. 102. Example 6 Ss-2 Z-test on P(NOMI|r) Results

8.7.5 Data Association

The overall results for Example 6 are displayed in Table 9. All three tests find S; and S, to be ANOM, so we can
conclude S; and S; are ANOM. Unfortunately, the classical sequential analysis method finds S; to be NOM, while
the other two methods determine it to be ANOM. Therefore, we cannot make any conclusions about Ss. If we want
to try to determine the cause for change in S; and Sy, then we can swap their new data. Since S; is cross-tagged with
S1 (yellow box), its new data is truly the new data from S;. So when we swap their new data and run the tests again,
S1 becomes NOM. Then the new data of S; is S3 (magenta box), so after swapping the data, S; becomes cross-tagged
with Sz. Thus, this becomes equivalent to Example 4. The description of how to resolve Example 4 is in Section
8.5.5. A depiction of the cross-tag resolution for Example 6 is shown in Fig. 103.

Table 9. Example 6 Results Chart

| Satellite | r Value Z-test | Classical Sequential | P(NOMIJr) Z-test
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Analysis
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Fig. 103. Example 6 Cross-tag Resolution

8.8 Summary of Cross-tag resolution

The six examples illustrate how the New Data for a cluster of three satellites may present itself with different
combinations of cross-tags between satellites. The cross-tag resolution procedure comprised a successive and
adaptive application of the Z-test and sequential analysis based on the preceding results of the composite hypothesis
testing. The resolution of the situations in examples 2 through 4 required a two stage application of the composite
hypothesis testing, while examples 5 and 6 required three stages. In each case, the cross-tag situations were reduced
to the data analysis performed in Example 1. Therefore, although our original conclusions for an example might be
that multiple satellites are ANOM, after resolving the cross-tags, we will conclude that S; and S; are NOM, and we
cannot make a conclusion about Ss. Thus, the three methods used in the examples and results tables provided to be
useful in all cases. The assessment is based on the use of P(type | error) = 0.05 and P(type Il error) = 0.05. For the
composite hypothesis test, the resultant P(type | error) = 3*0.05 or 15%.

Thus, there are several conditions when the results of the three tests do not agree with each other. The assessment of
NOM or ANOM s performed only when all tests agree. To improve the test results (this is so that all tests agree
with each other), we would first need to improve the Inversion Model and Prediction Model to obtain more accurate
r and P(NOM]Jr) values to provide to the tests. To adjust the two models, we need more observations for each
satellite, especially Ss. We also need new observations in order to detect the occurrence of ANOM on an ongoing
basis. In the present work, the Inversion Model and Predictive Model use the same physics procedure based on the
two facet model [1]. Thus, the improvement of the Inversion Model also results in the improvement of the Predictive
Model. This is described in Section 9.0.

8.9 Update of Baseline Signature

Once a satellite is determined to be NOM by the composite hypothesis test, we can update the baseline for that
particular satellite. Updating the baseline is essential to be able to account for seasonal changes. After the baseline
has been updated, testing is restarted to keep a current status of the satellite. Fig. 104 shows a notional example of
updating the baseline for Si. Since Sz was determined to be ANOM in Example 1, we cannot truly update the
baseline for the satellites in the cluster. However, this section demonstrates how the baseline could be updated if the
conditions were satisfied.

The dotted lines in Fig. 104 show the movement of the time slider. Because the classical sequential analysis method
determined S; was NOM at observation 7 in Example 1, the time slider is forwarded 7 points. It is up to the user to
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decide how far forward the time slider is moved. The slider can be moved forward to any point in the region from
the start of the new data up to where the classical sequential analysis method determines the satellite is NOM.

S, Apparent Magnitude Over Time

#Baseline

M New Data

Apparent Magnitude

13 B B L AL A S S l\ : \I R R e R
0 15 30 45 60 75 90 105 120 135 150

Relative Time (hours)

Fig. 104. S; Update of Baseline Signature

After move the time slider forward 7 observations, we can then use any of the methods described in Section 4.0 to
begin reevaluating the new data. Fig. 105 shows the results of the classical sequential analysis method ran on S;
using the updated baseline. The classical sequential analysis again determines S; is NOM. Thus, we could move the
time slider forward once again and restart the process.
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Fig. 105. S; Updated Classical Sequential Analysis Results

9.0 Sensor Tasking for Fine Feature Characterization

For the examples, our decision criterion did not lead the user to a definitive conclusion that S; was NOM or ANOM.
This work considers that such a lack of conclusion can be due to two reasons. First, the fidelity of the Predictive
Model may be too low. This results in the values of Brightness Ratio to exhibit significant scatter. Second, the
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satellite may have changed, which results in a lower fidelity for the Predictive Model since it is derived from the
inversion of baseline data. Or, the Predictive Model may have low fidelity and the satellite has changed.
Accordingly, the goal of sensor tasking is to collect data so as to enable the dual goals of assessment of change
and/or improvement of Predictive Model as efficiently as possible.

The motivation for the tasking method is from the maximum information entropy principle, which expresses the
claim of maximum ignorance. The probability distribution function for a quantity of interest is chosen to be one that
makes least claim to being informed beyond the baseline data [4]. The quantity of interest in sensor tasking is the
definition of observation conditions; namely the direction of illumination and the view direction for the sensor. In
this work, it is assumed that the effect of the illumination and observation conditions is captured by the value of a
single entity, namely the orbit angle. The orbit angle is defined to be the projection of the sun-satellite-sensor angle
in the orbital plane of the satellite. It is similar to the longitudinal phase angle, only difference being that the
longitudinal phase angle is computed with respect to the equatorial plane. Or, for a satellite with a zero orbital
inclination, the orbit angle is same as the longitudinal phase angle. This is a coarse yet practical approximation
because a complete definition of the illumination and observation directions is a function of the geometry and
orientation of the satellite solar panel and its body. At a minimum, it consists of four angles [5].

We consider that the change may occur such that it may not be observable from any value of the orbit angle. This is
because the change may cause minimal net change in the projected geometry of the satellite with respect to the sun
and the sensor. The orbit angle at which the change may be manifested in terms of difference in its brightness is
function of the change itself and is unknown a priori. Thus, the sensor tasking for the purpose of change detection
can make no assumption with respect to the choice of the orbit angle. Alternately, the choice of an orbit angle for the
next observation needs to be chosen as per a uniform probability distribution function. This strategy is postulated to
maximize the amount of new information per observation as per the principle of maximum information entropy.

We also note that the fidelity of the Predictive Model varies with the orbit angle. This is manifested in the random
character of the Brightness Ratio versus orbit angle as shown in Fig. 2 - Fig. 4. The range of values for the
Brightness Ratio is larger for S; as compared to S; and Sy. This is related to the reflection phenomenology as a
function of the orbit angle. For example, at intermediate values of orbit angle, the satellite brightness is commonly
governed by diffuse reflection. This is because the specular behavior of the solar panels is at smaller orbit angles
(closer to 0°), and the specular behavior off the fine body features is typically at larger orbit angles (closer to 90°). It
is generally easier to attain higher fidelity for the Predictive Model under diffuse reflection conditions at
intermediate orbit angles rather than its values closer to 0° or 90°. This is particularly when there is no self-occlusion
caused by any fine features on the body in the projected view of the satellite with respect to the sensor.

We also note that the fidelity of the Predictive Model varies with the orbit angle. This is manifested in the random
character of the Brightness Ratio versus orbit angle as shown in Fig. 106 - Fig. 108. The range of values for the
Brightness Ratio is larger for S; as compared to S; and S,. This is related to the reflection phenomenology as a
function of the orbit angle. For example, at intermediate values of orbit angle, the satellite brightness is commonly
governed by diffuse reflection. This is because the specular behavior of the solar panels is at smaller orbit angles
(closer to 0°), and the specular behavior off the fine body features is typically at larger orbit angles (closer to 90°). It
is generally easier to attain higher fidelity for the Predictive Model under diffuse reflection conditions at
intermediate orbit angles rather than its values closer to 0° or 90°. This is particularly when there is no self-occlusion
caused by any fine features on the body in the projected view of the satellite with respect to the sensor.

Consider the situation when there was no change in the satellite. In such a case, the lack of conclusion in regards to
NOM or ANOM for a satellite would depend on the fidelity of the Predictive Model. This is because the Predictive
Model is utilized to predict the expected brightness of the satellite at point in the new data. If the fidelity of the
Predictive Model is insufficient, the computed values of the Brightness Ratio at the new data points can be such that
test statistic for the new data suggests a difference from the baseline data. This may be the case even though there is
no statistically significant change.

The Predictive Model could be improved when additional data is collected. Any collection of additional data needs
to be such that it maximizes new information. In this regard, the fidelity of the Predictive Model as a function of the
orbit angle is postulated as being inversely related to the new information generated if the sensor tasking was
defined to collect new data at that orbit angle. This postulation may be interpreted by considering two cases for the
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orbit angle, one where the fidelity of Predictive Model is high and the second where it is low. This may be idealized
further as intervals of orbit angle values where the Brightness Ratio equals zero and nonzero, respectively. When the
Brightness Ratio is zero, the expected value of satellite brightness is equal to the predicted value, or there is no new
information in regards to the improvement of the Predictive Model. When the Brightness Ratio is nonzero, there is
new information that is useful in order to improve the Predictive Model. Thus, it is postulated that the sampling of
orbit angle values during the collection of additional data be inversely proportional to the absolute value of the
Brightness Ratio in order to maximize new information per observation.
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Since Ss is the satellite for which we require more data, we will focus on S; for the rest of this section. If the sensor
was utilized in a staring mode (i.e. persistent observation), the sampling rate for the observation data would be
uniform along the orbit angle axis. In such a case, the total new information would be proportional to the area under
the curve of orbit angle versus the absolute value of the Brightness Ratio (i.e., r values). Accordingly, Fig. 109
shows a plot of new information versus orbit angle for Ss. The peaks of this graph are areas where the Predictive
Model has lower fidelity, while the valleys are areas where the model has higher fidelity. Fig. 110 illustrates how the
new information would accumulate if the sensor was to observe the satellite persistently. This graph is normalized to
a maximum value of 1.0, which is meant to represent the totality of new information. We broke the total new
information into 10% bins, which is meant to represent that persistent observations over each orbital angle bin
would have the ability to provide 10% of the total new information. These bins are displayed in Fig. 111. Comparing
Fig. 109 and Fig. 111, the smaller bins align with the areas with the most error.
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Consider a situation when the Predictive Model has limited fidelity and the satellite may have changed. For
example, the lower fidelity of the Predictive Model could be caused by self-occlusion due to the fine features. Then
the sensor tasking would have a joint goal of maximizing new information per observation for the purpose of
improving the Predictive Model and/or detect change. The corresponding tasking strategy can be defined to combine
the needs of the Predictive Model and change detection using a two-step approach as follows (Fig. 111):

e The probability of selection of an orbital bin is equal. This is to maximize new information with respect to
change detection.

e The probability of selection of an observation condition within an orbital bin is uniformly distributed. This
is to maximize new information with respect to the improvement of fidelity of the Predictive Model.

The characterization of fine features using such a two-step sensor tasking strategy is a part of our future work.

10.0 Ongoing work and closure

This paper provides a statistical assessment technique for the resolution of multi-satellite cross-tag by making an
adaptive use of sequential analysis techniques. The method for cross-tag detection and resolution is useful
irrespective of the different types of cross-tag scenarios feasible for a cluster and when the signatures of the satellites
have significant overlap. Although the technique is demonstrated for a three satellite cluster, it can be extended to
clusters containing a larger number of satellites.

The current work uses simplified composite hypothesis testing, which allows a decision to be made only when all
tests agree. The next step is to enhance the composite test method by calculating the probabilities of all possible
incorrect conclusions, so that the user can make more informed decisions about the status of the satellites. This will
likely involve simulation due to the dependency of the hypothesis tests involved. .

The current analyses assume an idealized cross-tag situation where the cross-tag in the new data does not change
unless it is rectified. The next step is to extend the statistical assessment to the case of a switching or time-dependent
cross-tag. This is when a single set of new data for a satellite is cross-tagged with different satellites.

The current Inversion Model and Prediction Model use a 0™ order two-facet model. The next step is to enhance the
models to include the contribution of new data collected as per the principle of maximum information entropy in
order to better account for the antennae, dishes and self-occlusions.
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13.0 Appendix A: Notation

Text notation:

Brightness: Value of Brightness Data at a single data point

Brightness Data: Single point brightness data point collected by a ground or space-based sensor during the routine
synoptic search operation. This data is collected along with the angles only metric data

Brightness Ratio: Ratio of observed Brightness to predicted Brightness

Body: Body of a GEO satellite

Change: Modification of state of a satellite from NOM to ANOM or vice versa.

Change Detection: To recognize that the state of satellite has undergone Change

Cluster Peer: A pair of satellite in a cluster can be cross-tagged

NOM: Nominal status of a satellite. This is when the correlation coefficient between the observed Brightness and
the predicted Brightness exceeds a user-defined threshold limit.

ANOM: Anomalous status of a satellite. This is when the correlation coefficient between the observed Brightness
and the predicted Brightness is below the user-defined threshold limit for NOM.

Panel: Panel term for a GEO satellite (it combines the effect of both solar panels into a single term)

PDF: Probability distribution function

CDF: Cumulative distribution function

Signature Data: A sequence of Brightness measurements collected by a dedicated sensor during a single pass for a
target satellite. For GEO satellites, such data is collected at a frame rate such as one data point per minute, etc.

Mathematics notation:
1y, = ratio of observed Brightness of the satellite at pass k to predicted Brightness of the satellite at pass k. This ratio
is defined only at the orbital location when Brightness data is collected
Aryis the difference between 7, and 1,4
7 denotes the adjusted r value after it has subtracted p and divided by o
k = Index for an orbital pass number. The time slider origin is k = 0. Prior data is for k < 0. New data is for k > 0.
Iy is the observed single point brightness
Iy is the expected single point brightness
E (1) denotes the expected value
a = the level of significance of the test = P(Type | Error)
B =P(Type Il Error)
d is the number of standard deviations that mean drift mu is away from null hypothesis mean drift 0
P(NOMri) = Probability that satellite is NOM after pass k given the Brightness Ratio ry
H, denotes the null hypothesis
H, denotes the alternative hypothesis
M is the mean for the prior data
o is the standard deviation for the prior data
Ln denotes the use of a likelihood function

67
AMOS Technical Conference 2015



